Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2010): 20231592, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37909076

RESUMO

Besides manatees, the suspensory extant 'tree sloths' are the only mammals that deviate from a cervical count (CC) of seven vertebrae. They do so in opposite directions in the two living genera (increased versus decreased CC). Aberrant CCs seemingly reflect neck mobility in both genera, suggesting adaptive significance for their head position during suspensory locomotion and especially increased ability for neck torsion in three-toed sloths. We test two hypotheses in a comparative evolutionary framework by assessing three-dimensional intervertebral range of motion (ROM) based on exhaustive automated detection of bone collisions and joint disarticulation while accounting for interacting rotations of roll, yaw and pitch. First, we hypothesize that the increase of CC also increases overall neck mobility compared with mammals with a regular CC, and vice versa. Second, we hypothesize that the anatomy of the intervertebral articulations determines mobility of the neck. The assessment revealed that CC plays only a secondary role in defining ROM since summed torsion (roll) capacity was primarily determined by vertebral anatomy. Our results thus suggest limited neck rotational adaptive significance of the CC aberration in sloths. Further, the study demonstrates the suitability of our automated approach for the comparative assessment of osteological ROM in vertebral series.


Assuntos
Bichos-Preguiça , Animais , Coluna Vertebral , Evolução Biológica , Locomoção , Amplitude de Movimento Articular , Fenômenos Biomecânicos
2.
J Anat ; 242(6): 1037-1050, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36772893

RESUMO

Worldwide research groups and funding bodies have highlighted the need for imaging biomarkers to predict osteoarthritis (OA) progression and treatment effectiveness. Changes in trabecular architecture, which can be detected with non-destructive high-resolution CT imaging, may reveal OA progression before apparent articular surface damage. Here, we analysed the tibial epiphyses of STR/Ort (OA-prone) and CBA (healthy, parental control) mice at different ages to characterise the effects of mouse age and strain on multiple bony parameters. We isolated epiphyseal components using a semi-automated method, and measured the total epiphyseal volume; cortical bone, trabecular bone and marrow space volumes; mean trabecular and cortical bone thicknesses; trabecular volume relative to cortical volume; trabecular volume relative to epiphyseal interior (trabecular BV/TV); and the trabecular degree of anisotropy. Using two-way ANOVA (significance level ≤0.05), we confirmed that all of these parameters change significantly with age, and that the two strains were significantly different in cortical and trabecular bone volumes, and trabecular degree of anisotropy. STR/Ort mice had higher cortical and trabecular volumes and a lower degree of anisotropy. As the two mouse strains reflect markedly divergent OA predispositions, these parameters have potential as bioimaging markers to monitor OA susceptibility and progression. Additionally, significant age/strain interaction effects were identified for total epiphyseal volume, marrow space volume and trabecular BV/TV. These interactions confirm that the two mouse strains have different epiphyseal growth patterns throughout life, some of which emerge prior to OA onset. Our findings not only propose valuable imaging biomarkers of OA, but also provide insight into ageing 3D epiphyseal architecture bone profiles and skeletal biology underlying the onset and development of age-related OA in STR/Ort mice.


Assuntos
Osteoartrite , Camundongos , Animais , Camundongos Endogâmicos CBA , Osteoartrite/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Biomarcadores , Epífises/diagnóstico por imagem
3.
J Anat ; 241(4): 1066-1082, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986620

RESUMO

Joint range of motion (RoM) analyses are fundamental to our understanding of how an animal moves throughout its ecosystem. Recent technological advances allow for more detailed quantification of this RoM (e.g. including interaction of degrees of freedom) both in ex vivo joints and in vivo experiments. Both types of data have been used to draw comparisons with fossils to reconstruct locomotion. Salamanders are often used as analogues for early tetrapod locomotion; testing such hypotheses requires an in-depth analysis of salamander joint RoM. Here, we provide a detailed dataset of the ex vivo ligamentous rotational joint RoM in the hindlimb of the fire salamander Salamandra salamandra, using a new method for collecting and visualising joint RoM. We also characterise in vivo joint RoM used during walking, via scientific rotoscoping and compare the in vivo and ex vivo data. In summary, we provide (1) a new method for joint RoM data experiments and (2) a detailed analysis of both in vivo and ex vivo data of salamander hindlimbs, which can be used for comparative studies.


Assuntos
Salamandra , Animais , Ecossistema , Amplitude de Movimento Articular , Urodelos , Caminhada
4.
R Soc Open Sci ; 9(8): 220519, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36039284

RESUMO

Accurate muscle reconstructions can offer new information on the anatomy of fossil organisms and are also important for biomechanical analysis (multibody dynamics and finite-element analysis (FEA)). For the sake of simplicity, muscles are often modelled as point-to-point strands or frustra (cut-off cones) in biomechanical models. However, there are cases in which it is useful to model the muscle morphology in three dimensions, to better examine the effects of muscle shape and size. This is especially important for fossil analyses, where muscle force is estimated from the reconstructed muscle morphology (rather than based on data collected in vivo). The two main aims of this paper are as follows. First, we created a new interactive tool in the free open access software Blender to enable interactive three-dimensional modelling of muscles. This approach can be applied to both palaeontological and human biomechanics research to generate muscle force magnitudes and lines of action for FEA. Second, we provide a guide on how to use existing Blender tools to reconstruct distorted or incomplete specimens. This guide is aimed at palaeontologists but can also be used by anatomists working with damaged specimens or to test functional implication of hypothetical morphologies.

5.
J Anat ; 241(4): 1054-1065, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35819977

RESUMO

Quantifying joint range of motion (RoM), the reachable poses at a joint, has many applications in research and clinical care. Joint RoM measurements can be used to investigate the link between form and function in extant and extinct animals, to diagnose musculoskeletal disorders and injuries or monitor rehabilitation progress. However, it is difficult to visually demonstrate how the rotations of the joint axes interact to produce joint positions. Here, we introduce the spherical frame projection (SFP), which is a novel 3D visualisation technique, paired with a complementary data collection approach. SFP visualisations are intuitive to interpret in relation to the joint anatomy because they 'trace' the motion of the coordinate system of the distal bone at a joint relative to the proximal bone. Furthermore, SFP visualisations incorporate the interactions of degrees of freedom, which is imperative to capture the full joint RoM. For the collection of such joint RoM data, we designed a rig using conventional motion capture systems, including live audio-visual feedback on torques and sampled poses. Thus, we propose that our visualisation and data collection approach can be adapted for wide use in the study of joint function.


Assuntos
Movimento , Animais , Fenômenos Biomecânicos , Amplitude de Movimento Articular
6.
Integr Comp Biol ; 62(2): 139-151, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35687000

RESUMO

Salamanders are often used as analogs for early tetrapods in paleontological reconstructions of locomotion. However, concerns have been raised about whether this comparison is justifiable, necessitating comparisons of a broader range of early tetrapods with salamanders. Here, we test whether the osteological morphology of the hindlimb in the early tetrapod (temnospondyl amphibian) Eryops megacephalus could have facilitated the sequence of limb configurations used by salamanders during terrestrial locomotion. To do so, we present a new method that enables the examination of full limb configurations rather than isolated joint poses. Based on this analysis, we conclude that E. megacephalus may indeed have been capable of salamander-like hindlimb kinematics. Our method facilitates the holistic visual comparison of limb configurations between taxa without reliance on the homology of coordinate system definitions, and can thus be applied to facilitate various comparisons between extinct and extant taxa, spanning the diversity of locomotion both past and present.


Assuntos
Anfíbios , Urodelos , Anfíbios/anatomia & histologia , Animais , Extremidades/anatomia & histologia , Membro Posterior , Locomoção
7.
iScience ; 24(11): 103182, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34761178

RESUMO

Palaeontologists often use finite element analyses, in which forces propagate through objects with specific material properties, to investigate feeding biomechanics. Teeth are usually modeled with uniform properties (all bone or all enamel). In reality, most teeth are composed of pulp, dentine, and enamel. We tested how simplified teeth compare to more realistic models using mandible models of three reptiles. For each, we created models representing enamel thicknesses found in extant taxa, as well as simplified models (bone, dentine or enamel). Our results suggest that general comparisons of stress distribution among distantly related taxa do not require representation of dental tissues, as there was no noticeable effect on heatmap representations of stress. However, we find that representation of dental tissues impacts bite force estimates, although magnitude of these effects may differ depending on constraints. Thus, as others have shown, the detail necessary in a biomechanical model relates to the questions being examined.

8.
R Soc Open Sci ; 8(8): 210408, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34386254

RESUMO

Many physiological, biomechanical, evolutionary and clinical studies that explore skeletal structure and function require successful separation of trabecular from cortical compartments of a bone that has been imaged by X-ray micro-computed tomography (micro-CT) prior to analysis. Separation often involves manual subdivision of these two similarly radio-opaque compartments, which can be time-consuming and subjective. We have developed an objective, semi-automated protocol which reduces user bias and enables straightforward, user-friendly segmentation of trabecular from the cortical bone without requiring sophisticated programming expertise. This method can conveniently be used as a 'recipe' in commercial programmes (Avizo herein) and applied to a variety of datasets. Here, we characterize and share this recipe, and demonstrate its application to a range of murine and human bone types, including normal and osteoarthritic specimens, and bones with distinct embryonic origins and spanning a range of ages. We validate the method by testing inter-user bias during the scan preparation steps and confirm utility in the architecturally challenging analysis of growing murine epiphyses. We also report details of the recipe, so that other groups can readily re-create a similar method in open access programmes. Our aim is that this method will be adopted widely to create a reproducible and time-efficient method of segmenting trabecular and cortical bone.

9.
R Soc Open Sci ; 7(8): 201185, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32968540

RESUMO

Waterfalls are conspicuous geomorphological features with heterogeneous structure, complex dynamics and multiphase flows. Swifts, dippers and starlings are well-known to nest behind waterfalls, and have been reported to fly through them. For smaller fliers, by contrast, waterfalls seem to represent impenetrable barriers, but associated physical constraints and the kinematic responses of volant animals during transit are unknown. Here, we describe the flight behaviour of hummingbirds (the sister group to the swifts) and of various insect taxa as they fly through an artificial sheet waterfall. We additionally launched plastic balls at different speeds at the waterfall so as to assess the inertial dependence of sheet penetration. Hummingbirds were able to penetrate the waterfall with reductions in both their translational speed, and stroke amplitude. The body tilted more vertically and exhibited greater rotations in roll, pitch and yaw, along with increases in tail spread and pitch. The much smaller plastic balls and some flies moving at speeds greater than 2.3 m s-1 and 1.6 m s-1, respectively, also overcame effects of surface tension and water momentum and passed through the waterfall; objects with lower momentum, by contrast, entered the sheet but then fell along with the moving water. Waterfalls can thus represent impenetrable physical barriers for small and slow animal fliers, and may also serve to exclude both predators and parasites from nests of some avian taxa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...